World's only instant tutoring platform
dropdown-logo

Chapter 2 : Electrostatic Potential and Capacitance

NCERT

Topic List

Up Arrow Icon
questions: 46
Verified solutions and explanationsverified iconVerified
Question 18
Medium
Views

Views: 5,841

Answer the following:
(a) The top of the atmosphere is at about 400 kV with respect to the surface of the earth, corresponding to an electric field that decreases with altitude. Near the surface of the earth, the field is about . Why then do we not get an electric shock as we step out of our house into the open? (Assume the house to be a steel cage so there is no field inside!)

(b) A man fixes outside his house one evening a two metre high insulating slab carrying on its top a large aluium sheet of area . Will he get an electric shock if he touches the metal sheet next morning?

(c) The discharging current in the atmosphere due to the small conductivity of air is known to be 1800 A on an average over the globe. Why then does the atmosphere not discharge itself completely in due course and become electrically neutral? In other words, what keeps the atmosphere charged?

(d) What are the forms of energy into which the electrical energy of the atmosphere is dissipated during a lightning?
(Hint: The earth has an electric field of about 100 V at its surface in the downward direction, corresponding to a surface charge density = C. Due to the slight conductivity of the atmosphere up to about 50 km (beyond which it is good conductor), about + 1800 C is pumped every second into the earth as a whole. The earth, however, does not get discharged since thunderstorms and lightning occurring continually allover the globe pump an equal amount of negative charge on the earth.)

Previous Arrow

Prev

12

Next

Previous Arrow
Get instant study help from an expert tutor 24/7
Download Filo