class 12

Math

Algebra

Probability I

Let $E_{c}$ denote the complement of an event $E.$ Let $E,F,G$ be pairwise independent events with $P(G)>0$ and $P(E∩F∩G)=0$ Then $P(E_{c}∩F_{c}∩G)$ equals (A) $P(E_{c})+P(F_{c})$ (B) $P(E_{c})−P(F_{c})$ (C) $P(E_{c})−P(F)$ (D) $P(E)−P(F_{c})$