The solution of the differential equationxsinxdydx+(xcosx+sinx)y=s | Filo
filo Logodropdown-logo

Class 12



Differential Equations

view icon556
like icon150

The solution of the differential equationxsinxdydx+(xcosx+sinx)y=sinx. When y(0)=0 is

  1. xysinx=1−cosx
  2. xysinx+cosx=0
  3. xsinx+ycosx=0
  4. xsinx+ycosx=1
Correct Answer: Option(a)
Solution: [a] The equation is dydx+(xcosx+sinxxsinx)y=1x Integrating factor I.F. =e∫xcosx+sinxxsinxdx=elog(xsinx)=xsinx ∴ The solution is y(xsinx)=∫1x(xsinx)dx+c xysinx=−cosx+c when x=0,y=0⇒c=cos0=1 ∴ The particular solution is xysinx=1−cosx
view icon556
like icon150
filo banner image

Connecting you to a tutor in 60 seconds.

Get answers to your doubts.

playstore logoplaystore logo
Similar Topics
relations and functions ii
trigonometric functions
inverse trigonometric functions
application of derivatives