Class 12

Math

Algebra

Vector Algebra

Find the unit vector in the direction of the sum of the vectors, $→a=2i^+2j^ −5k^$and $→b=2i^+j^ +3k^$.

Connecting you to a tutor in 60 seconds.

Get answers to your doubts.

A pyramid with vertex at point $P$ has a regular hexagonal base $ABCDEF$ , Positive vector of points A and B are $i^andi^+2j^ $ The centre of base has the position vector $i^+j^ +3 k^˙$ Altitude drawn from $P$ on the base meets the diagonal $AD$ at point $G˙$ find the all possible position vectors of $G˙$ It is given that the volume of the pyramid is $63 $ cubic units and $AP$ is 5 units.

If $a,andb$ are unit vectors , then find the greatest value of $∣∣ a+b∣∣ +∣∣ a−b∣∣ ˙$

ABC is a triangle and P any point on BC. if $PQ$ is the sum of $AP$ + $PB$ +$PC$ , show that ABPQ is a parallelogram and Q , therefore , is a fixed point.

$ABCD$ is a parallelogram. If $LandM$ are the mid-points of $BCandDC$ respectively, then express $ALandAM$ in terms of $ABandAD$ . Also, prove that $AL+AM=23 AC˙$

The vectors $xi^+(x+1)j^ +(x+2)k^,(x+3)i^+(x+4)j^ +(x+5)k^and(x+6)i^+(x+7)j^ +(x+8)k^$ are coplanar if $x$ is equal to a. $1$ b. $−3$ c. $4$ d. $0$

If $a=i^+j^ +k^,b=4i^+3j^ +4k^$ and $c=i^+αj^ +βk^$ are linearly dependent vectors & $∣c∣$ = $3 $ , then ordered pair $(α,β)$ is $(1,1)$ (b) $(1,−1)$ $(−1,1)$ (d) $(−1,−1)$

If the vectors $aandb$ are linearly idependent satisfying $(3 tanθ+1)a+(3 secθ−2)b=0,$ then the most general values of $θ$ are a. $nπ−6π ,n∈Z$ b. $2nπ±611π ,n∈Z$ c. $nπ±6π ,n∈Z$ d. $2nπ+611π ,n∈Z$

$_{′}I_{′}$ is the incentre of triangle $ABC$ whose corresponding sides are $a,b,c,$ rspectively. $aIA+bIB+cIC$ is always equal to a. $0$ b. $(a+b+c)BC$ c. $(a+b+c)AC$ d. $(a+b+c)AB$