class 12

Missing

JEE Advanced

Which of the following compounds contain bond between same type of atoms. $N_{2}O_{4},B_{3}N_{3}H_{6},H_{2}S_{2}O_{3},N_{2}O,H_{2}S_{2}O_{8},B_{2}H_{6}$

Connecting you to a tutor in 60 seconds.

Get answers to your doubts.

If $α=3sin_{−1}(116 )$and $β=3cos_{−1}(94 )$, where the inverse trigonometric functions take only the principal values, then the correct option(s) is (are)

Let $a,b,c$be three non-zero real numbers such that the equation $3 acosx+2bsinx=c,x∈[−2π ,2π ]$, has two distinct real roots $α$and $β$with $α+β=3π $. Then, the value of $ab $is _______.

A rectangular sheet of fixed perimeter with sides having their lengths in the ratio $8:15$is converted into anopen rectangular box by folding after removing squares of equal area from all four corners. If the total area of removed squares is 100, the resulting box has maximum volume. Then the length of the sides of the rectangular sheet are24 (b) 32 (c) 45 (d) 60

The function $y=f(x)$ is the solution of the differential equation $dxdy +x_{2}−1xy =1−x_{2} x_{4}+2x $ in $(−1,1)$ satisfying $f(0)=0.$ Then $∫_{23}f(x)dx$ is

Let $X$be a set with exactly 5 elements and $Y$be a set with exactly 7 elements. If $α$is the number of one-one function from $X$to $Y$and $β$is the number of onto function from $Y$to $X$, then the value of $5!1 (β−α)$is _____.

Let $f:R→R$be a differentiable function with $f(0)=0$. If $y=f(x)$satisfies the differential equation $dxdy =(2+5x)(5x−2)1 $, then the value of $(lim)_{x→∞}f(x)$is ______

Let `f(x)``=x+log_ex-xlog_ex ,x(0,oo)dot`Column 1 contains information about zeros of `f^(prime)(x)f^(prime)(x)a n df^(x)dot`Column 2 contains information about the limiting behaviour of `f^(prime)(x)f^(prime)(x)a n df^(x)`at infinity.Column 2 contains information about the increasing/decreasing nature of `f(x)a n df^(prime)(x)dot`Column I, Column 2, Column 3I, `f(x)=0forsom ex(l , e^2)`, (i), `("lim")_("x"vecoo"")f^(prime)(x)=0`, (P), `f`is increasing in (0,1)II, `f'(x)=0forsom ex(l , e)`, (ii), `("lim")_("x"vecoo"")f^(x)=-oo`, (Q), `f`is decreasing in `(e ,e^2)`III, `f'(x)=0forsom ex(0,1)`, , `("lim")_("x"vecoo"")f^(prime)(x)=-oo`, (R), `f`is increasing in (0,1)IV, `f^(' '(x))=0forsom ex(1, e)`, , `("lim")_("x"vecoo"")f^prime^'(x)=0`, (S), `f`is decreasing in (`e , e^2`)Which of the following options is the only CORRECT combination?(I) (ii) (P) (b) (IV) (iv) (S) (III) (iii) (R) (d) (II) (ii) (Q)Which of the following option is the only incorrect combination?(III) (i) (R) (b) (I) (iii) (P)(II) (iii) (P) (d) (II) (iv) (Q)Which of the following options is the only CORRECT combination?(I) (ii) (R) (b) (II) (iii) (S)(III) (iv) (P) (d) (IV) (i) (S)