class 12

Missing

JEE Advanced

The structure of the intermediate I is

Connecting you to a tutor in 60 seconds.

Get answers to your doubts.

Consider the set of eight vector $V={ai^+bj^ +ck^;a,bc∈{−1,1}}˙$Three non-coplanar vectors can be chosen from $V$is $2_{p}$ways. Then $p$is_______.

For $a∈R$ (the set of all real numbers), $a=−1),$$(lim)_{n→∞}((n+1)_{a−1}[(na+1)+(na+2)+……(na+n)]1_{a}+2_{a}++n_{a} =60.1 $Then $a=$(a)$5$ (b) 7 (c) $2−15 $ (d) $2−17 $

If $g(x)=∫_{sinx}sin_{−1}(t)dt,then:$ (a)$g_{prime}(2π )=−2π$ (b) $g_{prime}(−2π )=−2π$ (c)$g_{prime}(−2π )=2π$ (d) $g_{prime}(2π )=2π$

Six cards and six envelopes are numbered 1, 2, 3, 4, 5, 6 and cards are to be placed in envelopes so that each envelope contains exactly one card and no card is placed in the envelope bearing the same number and moreover cards numbered 1 is always placed in envelope numbered 2. Then the number of ways it can be done isa.$264$ b. $265$ c. $53$ d. $67$

Let x, y and z be three vectors each of magnitude V2 tion on and the angle between each pair of them is E. If a is a let non-zero vector perpendicular to x and yx z and b is a non-zero tor perpendicular to y and z x x, then 1.

A curve passes through the point $(1,6π )$ . Let the slope of the curve at each point $(x,y)$ be $xy +sec(xy ),x>0.$ Then the equation of the curve is

Let $f:R→R$and $g:R→R$be two non-constant differentiable functions. If $f_{prime}(x)=(e_{(f(x)−g(x))})g_{prime}(x)$for all $x∈R$, and $f(1)=g(2)=1$, then which of the following statement(s) is (are) TRUE?$f(2)<1−(g)_{e}2$(b) $f(2)>1−(g)_{e}2$(c) $g(1)>1−(g)_{e}2$(d) $g(1)<1−(g)_{e}2$

Let n be the number of ways in which 5 boys and 5 girls can stand in a queue in such a way that all the girls stand consecutively in the queue. Let m be the number in which 5 boys and 5 girls stand in such a way that exactly four girls stand consecutively in the queue. Then the value of $nm $ is ____