For a non-zero complex number $z$, let $arg(z)$denote theprincipal argument with $π<arg(z)≤π$Then, whichof the following statement(s) is (are) FALSE?$arg(−1,−i)=4π ,$where $i=−1 $(b) The function $f:R→(−π,π],$defined by $f(t)=arg(−1+it)$for all $t∈R$, iscontinuous at all points of $R$, where $i=−1 $(c) For any two non-zero complex numbers $z_{1}$and $z_{2}$, $arg(z_{2}z_{1} )−arg(z_{1})+arg(z_{2})$is an integer multiple of $2π$(d) For any three given distinct complex numbers $z_{1}$, $z_{2}$and $z_{3}$, the locus of the point $z$satisfying the condition $arg((z−z_{3})(z_{2}−z_{1})(z−z_{1})(z_{2}−z_{3}) )=π$, lies on a straight line