class 12

Missing

JEE Advanced

The maximum number of isomers (including stereoisomers) that are possible on monochlorination of the following compound, is

Connecting you to a tutor in 60 seconds.

Get answers to your doubts.

The common tangents to the circle $x_{2}+y_{2}=2$ and the parabola $y_{2}=8x$ touch the circle at $P,Q$ andthe parabola at $R,S$. Then area of quadrilateral $PQRS$ is

If$α=∫_{0}(e_{9}x+3tan_{(−1)x})(1+x_{2}12+9x_{2} )dxwherηn_{−1}$takes only principal values, then the value of $((g)_{e}∣1+α∣−43π )is$

Six cards and six envelopes are numbered 1, 2, 3, 4, 5, 6 and cards are to be placed in envelopes so that each envelope contains exactly one card and no card is placed in the envelope bearing the same number and moreover cards numbered 1 is always placed in envelope numbered 2. Then the number of ways it can be done isa.$264$ b. $265$ c. $53$ d. $67$

Column 1,2 and 3 contains conics, equations of tangents to the conics and points of contact, respectively.Column I, Column 2, Column 3I, $x_{2}+y_{2}=a$, (i), $my=m_{2}x+a$, (P), $(m_{2}a ,m2a )$II, $x_{2}+a_{2}y_{2}=a$, (ii), $y=mx+am_{2}+1 $, (Q), $(m_{2}+1 −ma ,m_{2}+1 a )$III, $y_{2}=4ax$, (iii), $y=mx+a_{2}m_{2}−1 $, (R), $(a_{2}m_{2}+1 −a_{2}m ,a_{2}m_{2}+1 1 )$IV, $x_{2}−a_{2}y_{2}=a_{2}$, (iv), $y=mx+a_{2}m_{2}+1 $, (S), $(a_{2}m_{2}+1 −a_{2}m ,a_{2}m_{2}+1 −1 )$The tangent to a suitable conic (Column 1) at $(3 ,21 )$is found to be $3 x+2y=4,$then which of the following options is the only CORRECT combination?(IV) (iii) (S) (b) (II) (iii) (R)(II) (iv) (R) (d) (IV) (iv) (S)

Let $S$be the set of all column matrices $[b_{1}b_{2}b_{3}]$such that $b_{1},b_{2},b_{3}∈R$and the system of equations (in real variable)$−x+2y+5z=b_{1}$$2x−4y+3z=b_{2}$$x−2y+2z=b_{3}$has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least one solution for each $[b_{1}b_{2}b_{3}]∈S$?(a) $x+2y+3z=b_{1},4y+5z=b_{2}$and $x+2y+6z=b_{3}$(b) $x+y+3z=b_{1},5x+2y+6z=b_{2}$and $−2x−y−3z=b_{3}$(c) $−x+2y−5z=b_{1},2x−4y+10z=b_{2}$and $x−2y+5z=b_{3}$(d) $x+2y+5z=b_{1},2x+3z=b_{2}$and $x+4y−5z=b_{3}$

Let $s,t,r$be non-zero complex numbers and $L$be the set of solutions $z=x+iy(x,y∈R,i=−1 )$of the equation $sz+tz+r=0$, where $z=x−iy$. Then, which of the following statement(s) is (are) TRUE?If $L$has exactly one element, then $∣s∣=∣t∣$(b) If $∣s∣=∣t∣$, then $L$has infinitely many elements(c) The number of elements in \displaystyle{\Ln{{n}}}{\left\lbrace{z}\right|}{z}-{1}+{i}{\mid}={5}{\rbrace}is at most 2(d) If $L$has more than one element, then $L$has infinitely many elements

Let $f:R→R$be a differentiable function with $f(0)=0$. If $y=f(x)$satisfies the differential equation $dxdy =(2+5x)(5x−2)1 $, then the value of $(lim)_{x→∞}f(x)$is ______

Let $f:(0,∞)R$ be given by $f(x)=∫_{x1}te_{−(t+t1)}dt ,$ then (a)$f(x)$ is monotonically increasing on $[1,∞)$(b)$f(x)$ is monotonically decreasing on $(0,1)$(c)$f(2_{x})$ is an odd function of $x$ on $R$