class 12

Missing

JEE Advanced

Schemes 1 and 2 describe sequential transformation of alkynes M and N. Consider only the major products formed in each step for both the schemes. The correct statement with respect to product Y is

Connecting you to a tutor in 60 seconds.

Get answers to your doubts.

Word of length 10 are formed using the letters A,B,C,D,E,F,G,H,I,J. Let $x$be the number of such words where no letter is repeated; and let $y$be the number of such words where exactly one letter is repeated twice and no other letter is repeated. The, $9xy =$

Consider the circle $x_{2}+y_{2}=9$ and the parabola $y_{2}=8x$. They intersect at P and Q in first and 4th quadrant,respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S.

Circle(s) touching x-axis at a distance 3 from the origin and having an intercept of length $27 $ on y-axis is (are)

Let $f[0,1]→R$ (the set of all real numbers be a function.Suppose the function f is twice differentiable, $f(0)=f(1)=0$,and satisfies $f_{′}(x)–2f_{′}(x)+f(x)≤e_{x},x∈[0,1]$.Which of the following is true for $0<x<1?$

Let $f:[21 ,1]→R$ (the set of all real numbers) be a positive, non-constant, and differentiable function such that $f_{prime}(x)<2f(x)andf(21 )=1$ . Then the value of $∫_{21}f(x)dx$ lies in the interval (a)$(2e−1,2e)$ (b) $(3−1,2e−1)$(c)$(2e−1 ,e−1)$ (d) $(0,2e−1 )$

In a triangle the sum of two sides is x and the product of the same is y. If $x_{2}−c_{2}=y$ where c is the third side. Determine the ration of the in-radius and circum-radius

Let $[x]$ be the greatest integer less than or equal to $x˙$ Then, at which of the following point (s) function $f(x)=xcos(π(x+[x]))$ is discontinuous? (a)$x=1$ (b) $x=−1$ (c) $x=0$ (d) $x=2$

Let $f:[0,2]→R$ be a function which is continuous on [0,2] and is differentiable on (0,2) with $f(0)=1$$Let:F(x)=∫_{0}f(t )dtforx∈[0,2]I˙fF_{prime}(x)=f_{prime}(x)$ . for all $x∈(0,2),$ then $F(2)$ equals (a)$e_{2}−1$ (b) $e_{4}−1$(c)$e−1$ (d) $e_{4}$