class 12

Missing

JEE Advanced

if $a_{n=α−βα−β}$ where $α$ and $β$ are roots of equation $x_{2}−x−1=0$ and $b_{n}=a_{n+1}+a_{n−1}$ then

Connecting you to a tutor in 60 seconds.

Get answers to your doubts.

Let w = ($3 +2ι )$ and $P={w_{n}:n=1,2,3,…..},$ Further $H_{1}={z∈C:Re(z)>21 }andH_{2}={z∈c:Re(z)<−21 }$ Where C is set of all complex numbers. If $z_{1}∈P∩H_{1},z_{2}∈P∩H_{2}$ and O represent the origin, then $∠Z_{1}OZ_{2}$ =

Let $XandY$be two events that $P(X)=31 ,P(X|Y)=21 andP(Y|X)=52 $then:$P(Y)=154 $ (b) $P(X∪Y)=52 $$P(X_{prime}|Y)=21 $ (d) $P(X∩Y)=51 $

Word of length 10 are formed using the letters A,B,C,D,E,F,G,H,I,J. Let $x$be the number of such words where no letter is repeated; and let $y$be the number of such words where exactly one letter is repeated twice and no other letter is repeated. The, $9xy =$

If $y=y(x)$ satisfies the differential equation $8x (9+x )dy=(4+9+x )_{−1}dx,x>0$ and $y(0)=7, $ then $y(256)=$ (A) 16 (B) 80 (C) 3 (D) 9

Column 1,2 and 3 contains conics, equations of tangents to the conics and points of contact, respectively.Column I, Column 2, Column 3I, $x_{2}+y_{2}=a$, (i), $my=m_{2}x+a$, (P), $(m_{2}a ,m2a )$II, $x_{2}+a_{2}y_{2}=a$, (ii), $y=mx+am_{2}+1 $, (Q), $(m_{2}+1 −ma ,m_{2}+1 a )$III, $y_{2}=4ax$, (iii), $y=mx+a_{2}m_{2}−1 $, (R), $(a_{2}m_{2}+1 −a_{2}m ,a_{2}m_{2}+1 1 )$IV, $x_{2}−a_{2}y_{2}=a_{2}$, (iv), $y=mx+a_{2}m_{2}+1 $, (S), $(a_{2}m_{2}+1 −a_{2}m ,a_{2}m_{2}+1 −1 )$The tangent to a suitable conic (Column 1) at $(3 ,21 )$is found to be $3 x+2y=4,$then which of the following options is the only CORRECT combination?(IV) (iii) (S) (b) (II) (iii) (R)(II) (iv) (R) (d) (IV) (iv) (S)

Let $f_{prime}(x)=2+sin_{4}πx192x_{3} forallx∈Rwithf(21 )=0.Ifm≤∫_{21}f(x)dx≤M,$ then the possible values of $mandM$ are (a)$m=13,M=24$ (b) $m=41 ,M=21 $(c)$m=−11,M=0$ (d) $m=1,M=12$

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let $x_{i}$ be the number on the card drawn from the ith box, i = 1, 2, 3.The probability that $x_{1}+x_{2}+x_{3}$ is odd isThe probability that $x_{1},x_{2},x_{3}$ are in an aritmetic progression is

Let a,b ,c be positive integers such that $ab $ is an integer. If a,b,c are in GP and the arithmetic mean of a,b,c, is b+2 then the value of $a+1a_{2}+a−14 $ is