class 12

Missing

JEE Advanced

For the elementary reaction M $→$ N, the rate of disappearance of M increases by a factor of 8 upon doubling the concentration of M. The order of the reaction with respect to M is

Connecting you to a tutor in 60 seconds.

Get answers to your doubts.

Let $P=⎣⎡ 1416 014 001 ⎦⎤ $and $I$ be the identity matrix of order $3$. If $Q=[q_{()}ij]$ is a matrix, such that $P_{50}−Q=I$, then $q_{21}q_{31}+q_{32} $ equals

Let $[x]$ be the greatest integer less than or equal to $x˙$ Then, at which of the following point (s) function $f(x)=xcos(π(x+[x]))$ is discontinuous? (a)$x=1$ (b) $x=−1$ (c) $x=0$ (d) $x=2$

Let $n_{1},andn_{2}$, be the number of red and black balls, respectively, in box I. Let $n_{3}andn_{4}$,be the number one red and b of red and black balls, respectively, in box II. A ball is drawn at random from box 1 and transferred to box II. If the probability of drawing a red ball from box I, after this transfer, is $31 $ then the correct option(s) with the possible values of $n_{1}andn_{2}$ , is(are)

Perpendiculars are drawn from points on the line $2x+2 =−1y+1 =3z $ to the plane $x+y+z=3$ The feet of perpendiculars lie on the line (a) $5x =8y−1 =−13z−2 $ (b) $2x =3y−1 =−5z−2 $ (c) $4x =3y−1 =−7z−2 $ (d) $2x =−7y−1 =5z−2 $

In R', consider the planes $P_{1},y=0$ and $P_{2}:x+z=1$. Let $P_{3}$, be a plane, different from $P_{1}$, and $P_{2}$, which passes through the intersection of $P_{1}$, and $P_{2}$. If the distance of the point $(0,1,0)$ from $P_{3}$, is $1$ and the distance of a point $(α,β,γ)$ from $P_{3}$ is $2$, then which of the following relation is (are) true ?

Consider the set of eight vector $V={ai^+bj^ +ck^;a,bc∈{−1,1}}˙$Three non-coplanar vectors can be chosen from $V$is $2_{p}$ways. Then $p$is_______.

Let $f:[21 ,1]→R$ (the set of all real numbers) be a positive, non-constant, and differentiable function such that $f_{prime}(x)<2f(x)andf(21 )=1$ . Then the value of $∫_{21}f(x)dx$ lies in the interval (a)$(2e−1,2e)$ (b) $(3−1,2e−1)$(c)$(2e−1 ,e−1)$ (d) $(0,2e−1 )$

The value of the integral $∫_{0}((x+1)_{2}(1−x)_{6})_{41}1+3 dx$is ______.